

Oxidation number (O.N.)

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.

Na, Be, K, Pb,
$$H_2$$
, O_2 , P_4 , $S_8 = 0$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

Li+, Li = +1; Fe³⁺, Fe = +3; O²⁻, O =
$$-2$$

3. The oxidation number of oxygen is usually -2. In H_2O_2 and O_2^{2-} it is -1.

Rules for Assigning an Oxidation Number (O.N.)

General rules

- 1. For an atom in its elemental form (Na, O2, Cl2, etc.): O.N. = 0
- 2. For a monoatomic ion: O.N. = ion charge
- 3. The sum of O.N. values for the atoms in a compound equals zero. The sum of O.N. values for the atoms in a polyatomic ion equals the ion's charge.

Rules for specific atoms or periodic table groups

1. For Group 1A(1): O.N. = +1 in all compounds

2. For Group 2A(2): O.N. = +2 in all compounds

3. For hydrogen: O.N. = +1 in combination with nonmetals

4. For fluorine: O.N. = -1 in combination with metals and boron

5. For oxygen: O.N. = -1 in peroxides

O.N. = -2 in all other compounds(except with F)

6. For Group 7A(17): O.N. = -1 in combination with metals, nonmetals

(except O), and other halogens lower in the group

- 4. The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is -1. e.g. NaH
- 5. Group IA metals are +1, IIA metals are +2 and fluorine is always -1.
- 6. The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion.

Oxidation numbers of all the elements in HCO₃-?

$$HCO_3^ O = -2$$
 $H = +1$
 $3x(-2) + 1 + ? = -1$
 $C = +4$

Oxidation numbers of all the elements in the following?

$$F = -1$$
 $7x(-1) + ? = 0$
 $I = +7$

IF₇

NaIO₃
Na = +1 O = -2
$$3x(-2) + 1 + ? = 0$$

I = +5

$$K_2Cr_2O_7$$
 $O = -2$ $K = +1$
 $7x(-2) + 2x(+1) + 2x(?) = 0$
 $Cr = +6$

Oxidation Numbers

..... in salts = ionic charge

Examples:

Procedure to determine O.N. in covalent molecules

Move bonding electrons to the electron negative partner and count the fictive charge:

borane:

Methane:

$$\begin{array}{cccc}
H & \longrightarrow & H & \longrightarrow & +1 \\
C & \longrightarrow & -1 \\
\end{array}$$

Sample Problem

Determining the Oxidation Number of an Element

PROBLEM: Determine the oxidation number (O.N.) of each element in these compounds:

(a) zinc chloride (b) sulfur trioxide (c) nitric acid

PLAN: The O.N.s of the ions in a polyatomic ion add up to the charge of the ion and the O.N.s of the ions in the compound add up to zero.

SOLUTION:

- (a) ZnCl₂. The O.N. for zinc is +2 and that for chloride is -1.
- (b) SO₃. Each oxygen is an oxide with an O.N. of -2. Therefore the O.N. of sulfur must be +6.
- (c) HNO₃. H has an O.N. of +1 and each oxygen is -2. Therefore the N must have an O.N. of +5.

Sample Problem

Recognizing Oxidizing and Reducing Agents

The O.N. of C increases; it is oxidized; it is the reducing agent.

The O.N. of Pb decreases; it is reduced; it is the oxidizing agent.

The O.N. of H increases; it is oxidized; it is the reducing agent.

The O.N. of O decreases; it is reduced; it is the oxidizing agent.

Balancing Redox Equations

Oxalic acid H₂C₂O₄ is oxidised by the permanganate ion MnO₄ in acidic solution. During the reaction Mn²⁺ and CO₂ is formed.

$$MnO_4^-$$
 (aq) + $H_2C_2O_4$ (aq) ----- Mn^{2+} (aq) + CO_2 (g)

Calculate the oxidation numbers:

4th step: Multiply the equations to have the same number of electrons on each side. Simplify and add the equations.

Reduction:
$$MnO_4^- + 5e^- + 8H^+ \longrightarrow Mn^{2+} + 4 H_2O \mid x 2$$

Oxidation:
$$H_2C_2O_4$$
 \longrightarrow $2CO_2$ + $2e^-$ + $2H^+$ $x = 5$

Reduction:
$$2\text{MnO}_4^- + 10^{-} + 16\text{H}^+ \longrightarrow 2\text{Mn}^{2+} + 8\text{H}_2\text{O}$$

Oxidation:
$$5H_2C_2O_4 \longrightarrow 10CO_2 + 10e^- + 10H^+$$

$$\text{Redox:} \quad 2 \; \text{MnO}_4^- \; + \; 5 \text{H}_2 \text{C}_2 \text{O}_4 \; + \; 6 \text{H}^+ \quad \longrightarrow \quad 2 \text{Mn}^{2+} \; + \; 10 \text{CO}_2 \; + \; 8 \text{H}_2 \text{O}$$

Remember: in alkaline solutions you have to balance with OH-.


```
Reduction: MnO_4^- + 3e^- - \cdots + MnO_2 Charge: -4 \rightarrow 0
Oxidation: Br \rightarrow BrO_3^- + 6e^- Charge: -1 \rightarrow -7

Reduction: MnO_4^- + 3e^- - \cdots + MnO_2^- + 4OH^-
Oxidation: Br + 6OH^- - \cdots + BrO_3^- + 6e^-

Reduction: MnO_4^- + 3e^- + 2H_2O - \cdots + MnO_2^- + 4OH^-
Oxidation: Br + 6OH^- - \cdots + BrO_3^- + 6e^- + 3H_2O
```

Reduction:
$$MnO_4$$
 +3e + 2H₂O \longrightarrow MnO_2 + 4OH | x2

Oxidation: $Br + 6OH - \longrightarrow$ BrO_3 +6e + 3H₂O

Reduction: $2MnO_4$ +6e + $AH_2O \longrightarrow$ $2MnO_2$ + $AOH -$

Oxidation: $Br + 6OH - \longrightarrow$ BrO_3 +6e + 3 H_2O
 $2MnO_4$ (aq) + Br (aq) + H_2O (l) \longrightarrow $2MnO_2$ (s) + BrO_3 (aq) + $2OH$ (aq)

